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Recent investigations by Kraichnan (1961) and Ogura (1961) have raised 
doubts concerning the usefulness of the zero fourth cumulant approximation 
in turbulence dynamics. It appears extremely tedious to examine, by numerical 
computation, the consequences of this approximation on the turbulent energy 
spectrum although the appropriate equations have been established by Proud- 
man & Reid (1954) and Tatsumi (1957). It has proved possible, however, to 
compute numerically the sequences of an analogous assumption when applied 
to an isotropic passive scalar in isotropic turbulence. 

The result of such computation, for specific initial conditions described herein, 
and for stationary turbulence, is that the scalar spectrum does develop negative 
values after a time approximately ZA/(?.2)*, where A is a length scale typical of 
the energy-containing components of both the turbulent and scalar spectra and 
(G)* is the root mean square turbulent velocity. 

1. Introduction 
The application of an hypothesis of Millionshtchikov (1941) to the problem 

of turbulent energy decay was made independently by Proudman & Reid (1954) 
and Tatsumi (1957). This hypothesis assumes that the relationship among mean 
values of quadruple velocity component products and those of double velocity 
component products is the one appropriate to a jointly normal probability dis- 
tribution. The third-order convariances are not taken as zero, hence complete 
joint normality is not postulated. 

A recent critical appraisal of the general cumulant discard approximation, of 
which the above hypothesis is a particular case, has been presented by Kraich- 
nan (1 961) and throws suspicion on its validity except in the situation of low Rey- 
nolds number or short time intervals from an initially multivariate normal 
distribution of velocity. Ogura ( 1961) has shown that Millionshtchikov’s hypo- 
thesis leads, for two-dimensional turbulence, to a negative energy spectrum. 

The present investigation first derives the dynamical consequences of the 
zero fourth cumulant approximation when applied to the behaviour of a scalar 
field. The field has been chosen to be one which undergoes a first-order reaction as 
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well as turbulent mixing since this slight generalization adds no mathematical 
complexity to the problem and does provide an extra time-scale parameter. In  
physical terms this requires a dilute reactant with negligible temperature fluctua- 
tions. 

The appropriate spectral equations so obtained are solved numerically for a 
particular set of initial conditions, andit is found that the scalar spectrum becomes 
negative. This result is obtained from two distinct computing programmes, 
both of which are described in some detail and it is taken to be secure evidence 
that the hypothesis investigated here can produce unphysical results when applied 
to scalar mixing. 

2. The general equations of spectral transfer 
For the problem of an isotropic concentration fluctuation field randomly 

convected by and reacting with an isotropic turbulent velocity field, two equa- 
tions will be derived. The first of these relates the two-point, second-order correla- 
tion to a two-point, third-order correlation involving one velocity fluctuation 
component and two concentration fluctuations. The second equation relates a 
three-point third-order correlation to a three-point fourth-order one. In  order 
to achieve this, certain simplifying restrictions are employed. Both the field of 
turbulence and the field of concentration fluctuations are assumed isotropic. 
The coefficients of viscosity and of diffusion, and the reaction rate constant, 
are taken independent of position and time. Also it is necessary that the reactant 
be dynamically passive and that the reaction, if any, be first order. As remarked 
in the previous section these conditions can best be obtained by a dilute reactant 
for which temperature fluctuations are negligible. 

With these restrictions the material conservation equation for the reactant 
becomes 

cr, a 2 r  D-- -+A = ar qu.r) 
at ax, ax, ax, (2.1) 

where F(x, t )  is the concentration of the reactant, and is a random function of 
position and time, q(x, t )  is a turbulent incompressible velocity field assumed 
to be statistically specified u priori, D is the diffusion constant and C is the reac- 
tion rate constant. 

Taking the mean of (3.1) and subtracting the result from (3.1) we obtain 

(3.3) 

for homogeneous turbulence, where y(x,t) is defined as the fluctuation of con- 
contration about the mean at a point x and a time t .  A correlation equation for 
the concentration at two space points (x, x') and identical times can be formed in 
the usual fashion (for example, see Batchelor 1953, p. 79). If  we define a sepa- 
ration vector r = x' - x and for notational simplicity write y(x', t )  as y', the 
probability average of the time rate of change of yy' becomes 
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y(x, t )  is a stationary random function of x. Therefore it follows from Cramer’s 
theorem (1940) that since yy’(r) is the correlation scalar describing a homogeneous 
field of concentration fluctuations there exists a function A(k) which is its Fourier 
transform. Furthermore, the assumption of isotropy implies that A(k) can be 
written as a function of the magnitude of k. We use 

A(k) = G(k2),  (2-4) 
and a Fourier transform of equation (2.3) yields 

a 
- G(k2, t )  + 2(Dk2 + C) G ( P ,  t )  = T ( k 2 ,  t ) ,  at (2.5) 

where 

Corrsin (1951) has established, for isotropic fields, two properties of the triple 
moments occurring in equation (2.6) which are useful for our purposes : 

__ 
yy’uj(r) = -Yy’u;(r), (2.7) 

__ 
and yy‘uj(r) behaves as a cubic near Irl = 0. 

Application of these two results to (2.6) shows that 

Iom k2 T ( k 2 ,  t) dk: = 0. (2.8) 

Thus the transfer function T ( k 2 ,  t )  which can be interpreted as concentration 
spectral transfer from all other wave vectors to k has the obviously necessary 
property that its integral over wave-number space is zero. Hence it represents 
transfer of concentration ‘energy ’from one part of wave-number space to another 
without change in the total amount of such energy. It will be shown subsequently 
that the results obtained by the joint normal distribution hypotheses are quite 
consistent with this property. 

Equation (2.5) is the first of the principal equations to be derivedin this section. 
It is strikingly similar to the analogous correlation equation in isotropic turbu- 
lence, but i t  is easy to show that the similarity in form and in the behaviour of 
the transfer function is a direct consequence of the linearity of first-order reac- 
tions. Higher-order reactions introduce a new non-linear transfer phenomenon 
which does not have the property represented by (2.8). 

The second-moment equation of interest may be obtained by first multiplying 
(2.2) by y‘ui and multiplying (2.2) written for y’(x’, t )  by yu;. Add, then use 
of the incompressibility condition shows that 

The double prime refers to quantities at x”, a third space point. 
If the Navier-Stokes equations a t  x“ are multiplied by yy’, we have 

(2.9) 

(2.10) 
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When equations (2.9) and (2.10) are added and averaged then 

Edward E. O’Brien and George C. Francis 

Defining r’ by the equation x“ = x + r’ and as before x’ = x + r then 

(2.12) 

Use of the incompressibility condition and (2.12) and the partial derivative with 
respect to rk of (2.11) leads to the scalar equation 

(2.13) 

Equation (2.13) expresses the relation between third- and fourth-order means in 
its most appropriate form for our purposes. It is a straightforward calculation 
(O’Brien 1960) to demonstrate that the Fourier transform of - 2a(yy’ui)/ar, 
defined by 

(Yy’ui) e-ik. r-ik.r’drdr‘ 11; ___ 
9 ( k ,  k’, t )  = - 2 ( 2 ~ ) - ~  

is related to T(k2, t )  in (2.5) by 

T(k2, t )  = 1.2(k, k’, t )  dk’. (2.14) 

The left-hand side of (3.13) has an important symmetry property, demon- 
strated below, which is independent of the statistical assumption employed in 
reducing the right-hand side of (2.13) but which is useful in determining valid 
forms for the initial conditions on 9 ( k ,  k’, t )  and for showing that use of the zero 
fourth cumulant approximation is formally consistent with the requirements of 
equation (2.5). A Fourier transform of the left-hand side of (2.13) (and a multi- 
plication by - 2)  produces the terms 

{:+ [2Dkk’p+22Dk2+ ( v + D )  ki2+  ZC]) 9 ( k ,  k’, t), 

p=---- k.k‘ 
Ikl Ik‘l. 

where 



The zero fourth cumulant approximation 373 

The symmetry property mentioned above can best be seen if we adopt Tat- 

(2.15) 

sumi's (1957) notation and define a new vector k by the relation 

k +  k'+ k" = 0, 

and let 

Then and 

Let 9 ( k ,  k ,  t ) ,  which by isotropy can be written 64,(k, k ' ,p ,  t ) ,  be considered as 
a function of k ,  k" and t .  We write it as 

k'2 = k2 + k"2 + 2p'kk" k"2 = k2 + k f 2  + 2pkk'. 

L(k,  k",t)  = L(k,k",p',t) = 9 1 ( k , k ' , p , t ) .  

If we adopt k" as defined by (2.15) as an independent variable instead of k', 
we find that the transformed left-hand side of (2.13) takes the form 

where f(k,k",p') = D(k2+Ic"~)+vk'2+2C 

and is therefore symmetric in k and k .  

(2.14). That the latter equation can be written 
The significance of this symmetry can be demonstrated by combining (2.5) and 

T(k2, t )  = l L ( k ,  k", t )  d k  

is physically evident and easily proved by noting that the Jacobian 

a(kr,p) k"2 

q k ' f , p ' )  - -k'2- -- 

Hence from (2.5) and (2.14) 

/ k ( k ,  k ,  t )  dk dk" = 0. (2.16) 

A sufficient condition for this identify to be satisfied is that L be antisymmetric 
in k and k ,  and a consequence of the symmetry off(k, k", p') in k and k is that 
the symmetric and antisymmetric parts of L(k,  k", t )  obey independent equations. 

From (2.16) it  seems wise to choose L(k, k ,  0 )  as antisymmetric in k and k. 
The formal consistency of the zero fourth cumulant approximation becomes 
evident when, as we show in 5 3, the Fourier transform of the right-hand side of 
(2.15) is then also antisymmetric in k and k .  Under these conditions no sym- 
metric termsin L ( k , k , t )  can be generatedand (2.16)isidenticallysatisfiedforallt. 

It is suspected, although not proved, that the complete right-hand side of 
(2.13) without approximation may also have this antisymmetry property and 
that therefore L(k, k ,  t )  may be quite generally interpreted as representing 
concentration 'energy' transfer from wave vector k to wave vector k". 

3. Spectral decay equations 
It is possible to obtain a determinate set of decay equations by assuming that all 

fourth-order covariances are related to second-order ones in the same manner 
as they are for Gaussian variables. Under this zero fourth cumulant approxima- 
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tion the mean of four fluctuating components a, b,  c and d ,  each with zero means, 

__ _ _  _ - will satisfy the equation 
abcd = ab cd + ac bd f a d  bc. 

If a, b,  c and d were true Gaussian variables any odd-order mean would vanish. 
Evidently to require this would eliminate completely the inertial transfer effects 
from equation (2.5) and thus destroy the very property which is central to the 
problem. 

Use of (3.1) for fourth-order moments consisting of two velocities and two con- 
centrations leads to reductions of all the terms on the right-hand side of (2.13). 
For example 

~ ~ _ _ _ _ ~ _ _ _  
u;ujyy’ = u;uj yy‘+u;Eyujy‘+u;y‘u*y, 

- 
but all first-order isotropic solenoidal tensors (such as ujy’ ,  etc.) are zero, so that 
we have simply ~ - -  

uiuiyy‘ = u;Zui(r’) yy’(r), 

and Qkj ,  the Fourier transform of yy’u;uj, becomes 

- 
where $jk(k’) is the Fourier transform of uju;(r‘). Similarly, by redefining vari- 

r = 5.; r’-r = 7 
ables 

and taking the Fourier transform of u;u;yy‘ it  can be shown (O’Brien 1960) 
that, if QLj is this Fourier transform, 

The remaining term on the right-hand side of (2.13) can be shown to be identi- 
cally zero under this hypothesis by the following reasoning: 

- -  
ulu; yy’(r, r’) = u;u;(O) yy‘(r), 

which is independent of r’ and so 

Furthermore, 

~ 

by incompressibility when uiuj  yy‘ = u;uj yy‘. 
Finally we note a result of Reid (1955) who demonstrated that the triple 

correlation yy’p’’ is identically zero under the hypothesis we are investigating. 
The quantity $jk(k) which occurs in (3.2) and (3.3) and is defined following 

(3.2) can, for isotropic fields using invariance theory (Robertson 1940) and the 
incompressibility condition k; cjjk(k’) = 0,  be written in the form 
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where $(k‘2) is an arbitrary scalar and will be given its usual title of turbulent 
energy spectrum density. 

Equations (3.2), (3.3) and (3.4) can be used to write the transform of equation 
(2.13) in its most concise form as 

{%+f(k,  a k”, ,d) )L(k ,  k” ,p‘ ‘ , t )  = 2k2(1-p2) q5(k’2) [G(kr’2 , t ) -G(k2 , t ) ] ,  (3.5) 

where f ( k ,  k”,p‘)  = Dk2+Dkn2+vkr2+2C 

was defined in the preceding section. 
For convenience we rewrite equations (2.5) and (2.14) of $ 2  since they, in 

conjunction with ( 3 4 ,  form the closed set of moment equations we desired to 
establish : 

(2 .5 )  
3G 
- (k2, t )  + [3Dk2+ 2C] G(k2, t )  = T(k2, t ) ,  
at 

Prn P + l  

L ( k ,  k“,p‘,  t )  k“2dk” dp‘ = T ( k 2 ,  t ) .  2nJo  Jil- (2.14) 

Structurally equations (2.5) and (3.5) are quite similar and their solutions can 
be written immediately in the following manner: 

L ( k ,  k ” , p ’ , t )  = L ( k ,  k”,,u‘, O)exp{-f(k, k”,p‘ ) t }  

+ 2 k 2 ( l - p 2 ) / :  exp{-f [ t - t ’ ] )#(k‘2, t )  [G(V2, t ’ ) -G(k2, t ’ ) ]dt‘ ,  (3.6) 

G(k2, t )  = G(k2, 0 )  exp { - 2[Dk2 + C ]  t }  

+ 1: T(k2, t ’ )  exp{ - 2[Dk2+ C ]  [ t - t ’ ]}dt’ .  (3 .7  

The simultaneous equations (3.6) and (3.7) together with (2.14) constitute the 
fundamental equations for the present study. In  the next section certain definite 
conditions on G(k2, t )  and q5(k‘2, t )  are specified and numerical calculations are 
presented for the decay of a particular concentration spectrum. 

4. Numerical computation of the decay of a typical spectrum 
It is quite possible to rewrite equations (2.5) and (3.5) in dimensionless form. 

However, unless the length and velocity scales are chosen to be time independent 
we can no longer present the solutions in the form (3.6) and (3.7). Since we will 
be concerned only with stationary turbulence the root-mean-square velocity 
(G)* used to non-dimensionalize the velocity fluctuation will be truly time inde- 
pendent. The same, unfortunately, is not true of the length scale which should 
alter as the concentration spectrum decays in time. We therefore have been forced 
to choose as the length scale one which is appropriate to the initial concentration 
spectrum. We have in fact chosen to use the inverse of the wave-number at which 
the initial concentration spectrum peaks. It can easily be shown that for the 
particular spectrum which we have examined numerically this is of the same 
order as the concentration microscale. 
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If we denote this length scale by A the following dimensionless numbers arise : 

a Reynolds number, 

a Peclet number, 

ND = - a Damkohler number of the first kind. 
(U2)fr  ’ 

The use of A in the Reynolds number will not be misleading since for the spectra 
we examine A is of the same order as the turbulence microscale. 

Equations (3.6), (3.7) and (2.14) will yieldinformation aboutthe time andwave- 
number behaviour of a concentration spectrum density G(k2, t )  only when two 
initial conditions G(k2, 0) and L(k,  k”, p, 0) and the turbulence spectrum density 
q5(k’2, t )  are specified. One restriction that L(k, k“, id, 0) be antisymmetric in 
k and k” has already been noted. It would evidently be useful to examine a wide 
range of initial conditions to explore the degree of dependence of the solution on 
the initial statistical distribution. We will, however, consider only the most 
simple situation, that in which initially the statistical distribution third-order 
moments are zero and hence T(k2, 0) and L(k, k ,  p‘, 0) are zero. Such a situation 
occurs for example if one assumes an initially multivariate normal distribution, 
and concentration fields are initially uncorrelated. 

One spectrum for which T(k2, 0) might be expected to be zero is the one typical 
of the final period of decay (Proudman & Reid 1954) when there is, in fact, 
negligible energy transfer. Its precise definition will be described subsequently. 
It should be emphasized that use of such a spectrum does not limit us to the final 
period but merely provides us with a consistent and well-behaved initial condition. 

With these ideas in mind the spectrum whose decay we have computed has 
the following description: 

G(k2, 0 )  = Ble-k2, 
#(k’2,0)  = c j ( k ’ 2 , t )  = (3n%)-lk e (4.1) 

YlP, k’,ic, 0) = 0, 

l 2  -d 
where the independent variables are now all dimensionless. 

(3.7), (3.6) and (2.14) we obtain 
When the above information is inserted into the non-dimensional forms of 

2kk‘p 2k2 ( 1 1 )  ] ] + - + - + - Ic’2 + 2ND ( t  - t’) [G(krr2, t ’ )  - G(k2, t ’ ) ]  dt’, 
x J ~ e x p [ - ( ~  Np Np Nx 

(4.3) 

T(k2, t )  = 2n10m S” Y l ( k ,  k’ ,p ,  t )  X2dk’dp, (4.4) 
-1 



The zero fourth cumulant approximation 377 

where G(k2, 0) = B1e-k2 and, from previous remarks on the scaling, the non- 
dimensional time t is actual time multiplied by (2)”ln. 

The above equations are linear in B,, hence in the graphical presentation of 
results i t  is pertinent to leave the ordinate arbitrary. The use of k, k‘, p and t 
as independent variables rather than k, k”, p‘ and t is for convenience only. 

From (4.2) i t  follows that 

Hence 

by the trapezoidal rule (error of order 7 2 ) .  Similarly, letting 

Y l ( t  +T) = e-V‘L(t) + $n-%k2k’2e-wa(l -p2)  7[e-V7(G(kn2, t )  - G(k2, t ) ) ] ,  

where the less precise rectangular rule rather than the trapezoidal is used 
because G(k2, t + r )  is not known at  this stage. From 2 , ( t  + 7) a double summation 
leads to T(E2, t + r),  which is then used to calculate G(k2, t + 7) : 

T ( k 2 , t + 7 )  x [2nk’2Wv C ( Y 1 ( k , k ’ , p u , t + 7 ) W p ) ] ,  
O i k ‘ i M  - l< ,u<l  

where M$ and W, are weights related to the points chosen. The particular sum- 
mations used were those of Gauss quadrature (Gowan, Davids & Sevenson 1942) 
which gives high accuracy for relatively few summands. (In the case considered, 
16 values of k’ <: 12 and 9 values of p were sufficient.) 

The final approximation made was related to G(V2, t) .  Such values were ob- 
tained by quadratic interpolation in the table of G(k2, t ) ,  with any values outside 
the table, or any negative values obtained through inaccuracies, being taken as 
zero. As a check on the accuracy of the calculations we have used the condition 
(3.8) of conservation of ‘ energy ’ in convective transfer, 

JOm k2T(k2, t )  dk = 0. 

Since k2T < 0 for small k, say k < k,, and L2T > 0 for larger k, IJok1k2Tdkl 

should equal I 1: k2T dk I. At every time-step these integrals were evaluated and 

compared. At no time did they differ by more than 4 % using a combination of 
trapezoidal and Simpson’s rules. 
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It had been hoped that the above programme could have been carried out for 
enough different values of Np, NR and ND to include most physically interesting 
systems. Initially NB was chosen as 50, Np as 3500 (a Schmidt number of 700), 
and iVD as 0.04 to give a fairly strong reactive effect. The number of values of 
k,  k‘ and p, nearly a maximum compatible with the memory space available on 
the computer, were 30 for k ,  16 for k‘, and 9 for p. 

0 2 4 6 8 

k 

FIGURE 1. Three-dimensional concentration ‘energy’ spectrum k2G(kZ,  t ) .  Ordinate scale 
arbitrary. N R  = 50, Np = 3500, No = 0.04. 

Figure 1 shows the behaviour of the concentration spectrum kzG(kz,t)  and 
figure 2 presents the transfer function k2T(k2, t )  as decay proceeds. It is evident 
that an unexpected dip occurs in the scalar spectrum near k = 1.4 which is also 
approximately the dimensionless wave-number corresponding to the peak of the 
turbulence energy spectrum. It is very convenient for calculation purposes to 
maintain, as we have done here, the turbulent energy spectrum peak and scalar 
spectrum peak at  the same order of wave-number, but without examining other 
arrangements where the two spectra are widely separated it is impossible to 
determine in general how intimately the turbulent spectrum and the phenomenon 
of a dip formation are related. This has not been done. The occurrence of negative 
values of the scalar spectrum (at t = 2.14) led us to decide to verify that this was 
a real effect by examining the same spectrum’s decay using a second programme 
quite distinct from the first. 

An alternative calculation of the same spectral decay problem as above, 
(4.1), can be made by carrying out the integration over ,u analytically before 
devising a computing programme. When this is done it becomes evident that for 
the spectrum under consideration there is a considerable time duration during 
which the diffusive terms (and reaction term) have negligible influence. Since 
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the non-diffusive case can be examined with considerably improved accuracy a 
computation of this has been carried out. 

If (3.5) is inserted into ( 2 4 ,  the initial condition L(k, k“, p‘, 0 )  = 0 is used and 
$(k’2, t )  is taken independent of time, we have 

at (k2 ,  t )  + 2[Dk2 + C] G(k2, t )  = Jke J: 2k2exp -jv, k”, p’) rt - t’1>(1 -P) $(k‘2) 

x [G(k’’’, t‘) - G(k2,  t ’ ) ]  d t ‘ d k .  (4.5) 

0 2 4 6 8 10 

k 

FIGURE 2. Three-dimensional concentration spectral transfer function kBT(ka,  t ) .  Ordinate 
scale arbitrary. N R  = 50, N p  = 3500, N D  = 0.04. 

The further assumption that diffusive terms be neglected reduced (4.5) to 

If a function P(k2, t )  is defined by B’(k2, t )  = G(k2, t’)  dt‘ and if the sine rule .c 
is applied to the vector triad k + k’ + k = 0 to yield k’2( 1 -p2) = V2( 1 -,u’~) then 
(4.6) becomes 

where K(k, k”) = [2k2k”2(1 - , ~ ’ 2 )  $(kr2)]/k’2 is symmetric in k and k’  and not less 
than 0 for all k and k and 

I- 

g(k) = J K(k, k”) d k .  
k” 
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From the form of q5(K2) as given by (4.1), K ( k ,  k’) and g(k) can be calculated. 
When this is done and (4.7) is re-expressed in scalar form it becomes 

x [(2kk” + 1) exp ( - 2kk”) + (2kk” - 1) exp (2kk”)l dk”, (4.8) 

with the initial conditions 
F(k2,O) = 0, 

ap 
at 
- (k2,O) = G(k2, 0) = BIe-k2. 

With k held fixed and the integral replaced by an approximating sum, the 
differential equation becomes an ordinary one of second order, or a pair of first 
order : ap - (k2, t) = G(k2, B ) ,  

at 
dG 
- (k’, t )  = - 27i8kzF(kz, t )  + I(k2,  t), 
at 

where I(k2,  t )  = 0 if k = 0 and, otherwise, 

x [(2kk”+ 1)exp(-(k+k”)2)+ (2kk”- l)exp{+(k-k“)2)], 

where Wkv is the weight associated with point k”, and M is an upper bound to the 
region of significance (an ‘ approximation ’ to co). 

Selecting the kn-values from among the k-values eliminates the inaccuracy of 
interpolating for P(kn2, t ) .  (Such specification was not possible in the more general 
problem discussed earlier.) 

The differential equations were integrated by the Runge-Kutta-Gill method 
(Gill 1951), a standard procedure for high-speed electronic computers, not con- 
venient for hand calculations. 

The condition of conservation of (energy ’ in convective transfer becomes in 
the new formulation 

Again this condition is used as a continuous check on the accuracy of the 
calculations. Both integrals were evaluated (by Simpson’s rule) at every t, and 
the procedure was stopped when they differed by as much as 5 %. 

For the specific case considered in this paper, 19 values of k and 25 values oft“, 
0 < k” 6 11-8, wereused. Thesummation over k” to obtain I(k2, t )  used Simpson’s 
rule also. 

Figures 3 and 4 present the behaviour of the concentration spectrum k2G(kZ, t )  
and the transfer function k2T(k2, t) respectively. The very close similarity between 
figures 1, 2 and 3, 4 show that diffusive terms are indeed negligible for a con- 
siderable time as we surmised and, more significantly, that the joint normal 
distribution hypothesis can lead to a negative spectrum. 
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h u 

c-’ = 0’33 

r t  = o’66 4 r t  = 0’99 

I I I I I I I I  
0 2 4 6 8 

k k 

FIGURE 3. Three-dimensional concentration 
‘energy’ spectrum kzG(k2,t) .  Ordinate scale 
arbitrary. N ,  = 00, Np = CO, Nn = 0. 

FIGURE 4. Three-dimcnsional concentration 
spectraltransfer function kaT(k2, t ) .  Ordinate 
scale arbitrary. N R  = 00, Np = CO, N D  = 0. 
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